AI与自动驾驶会产生什么化学反应

2025/8/3 来源:不详

1.自动驾驶:AI大模型有助于我们提升覆盖小概率路况的效率

小概率路况的覆盖是自动驾驶落地的核心问题。由于一旦发生事故造成的后果极为严重,自动驾驶是一个对小概率情况非常敏感的场景。由于交通事故将会产生非常严重的后果,对于主机厂而言,在责任明晰之前,即使是99.99%的可靠性也是不能接受的,因为这可能意味着每卖出台车可能就会产生一起事故。行业特点决定了要实现自动驾驶就必须先对长尾场景进行有效覆盖。

测试里程的积累是有效覆盖小概率路况的前提。根据广汽的预测,要实现L4级自动驾驶所需要的长尾场景覆盖程度,至少需要完成10亿个测试场景,最小测试里程也需要10亿公里,这两个数据分别是实现L2级自动驾驶的10万倍、1万倍。

此前,测试里程的积累主要有两种方式。一种是通过自动驾驶车队来进行数据采集,以Waymo为代表;一种是通过私家车进行数据采集,以特斯拉为代表。

通过自动驾驶车队进行路测来覆盖小概率路况的方法效率比较低。Waymo是自动驾驶领域的霸主,但是在过去很多年里,感知问题、行人问题、软件问题等方面,Waymo的接管频率并没有收敛(基于加州路测报告)。毫无疑问,Waymo的自动驾驶能力是逐年增强的。那么,Waymo在软件问题、行人问题等方面的表观“退步”就只能用它在覆盖更多的小概率路况来解释。比如,在高速公路等路况相对简单的场景下测试获得好的结果之后,Waymo会把路测地点逐渐向难度更高的城区街道进行拓展。

众包方式能在一定程度上提升对小概率路况的覆盖效率。特斯拉采用影子模式取代测试车队。影子模式本质上是通过众包的方式来解决场景的快速积累问题。在这一模式下,即使在人进行驾驶的时候特斯拉自动驾驶系统同样也在进行计算自己会怎么做,然后和人的选择进行对比。如果自动驾驶系统和人的选择不一致,就对这类数据进行汇集,然后交由工程师判断自动驾驶系统的选择是否合理。年3月,特斯拉就申请了从车队中获取自动驾驶训练数据的专利。由于特斯拉的汽车数量远远多于自动驾驶测试车队,影子模式可以更快地实现对驾驶长尾场景的积累,同时得到的结果也有更强的统计学意义。截至年末,特斯拉累计交付搭载自动辅助驾驶硬件的车辆85万辆,AP激活状态下累计行驶里程已超过20亿公里,远远超过竞争对手(Waymo为万公里)。由于特斯拉保有量持续攀升,其他竞争对手和特斯拉之间在数据积累量以及长尾场景覆盖程度上的差距将会越拉越大。

大模型对于覆盖小概率路况意义重大。

大模型可以大幅提升场景生成、标注的效率

随着AI大模型的出现,我们覆盖自动驾驶小概率路况的效率有望大幅提升,这种效率提升至少源于两个方面:

场景生成

利用AI大模型进行场景生成是覆盖小概率路况的新思路。相对于单纯的路测,直接进行场景生成,并将仿真结果与路测相结合对于快速实现路况覆盖大有裨益。比如毫末已发布DriveGPT雪湖·海若,可以实现三项能力:

按照概率生成很多个场景序列,每个场景序列都是未来可能会出现的一种实际路况;

在所有场景序列都产生的情况下,能对场景中最

转载请注明:
http://www.3g-city.net/gjyzd/10270.html
  • 上一篇文章:

  • 下一篇文章:
  • 网站首页 版权信息 发布优势 合作伙伴 隐私保护 服务条款 网站地图 网站简介

    温馨提示:本站信息不能作为诊断和医疗依据
    版权所有2014-2024 冀ICP备19027023号-6
    今天是: